Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799069

RESUMO

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Assuntos
Cellulomonas , Xilanos , Cellulomonas/genética , Cellulomonas/metabolismo , Fibras na Dieta , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
2.
Appl Microbiol Biotechnol ; 104(22): 9631-9643, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965563

RESUMO

Woody biomass represents an important source of carbon on earth, and its global recycling is highly dependent on Agaricomycetes fungi. White-rot Basidiomycetes are a very important group in this regard, as they possess a large and diverse enzymatic repertoire for biomass decomposition. Among these enzymes, the recently discovered lytic polysaccharide monooxygenases (LPMOs) have revolutionized biomass processing with their novel oxidative mechanism of action. The strikingly high representation of LPMOs in fungal genomes raises the question of their functional versatility. In this work, we studied an AA9 LPMO from the white-rot basidiomycete Pycnoporus sanguineus, PsAA9A. Successfully produced as a recombinant secreted protein in Pichia pastoris, PsAA9A was found to be a C1-specific LPMO active on cellulosic substrates, generating native and oxidized cello-oligosaccharides in the presence of an external electron donor. PsAA9A boosted cellulolytic activity of glysoside hydrolases from families GH1, GH5, and GH6.This study serves as a starting point towards understanding the functional versatility and biotechnological potential of this enzymatic family, highly represented in wood decay fungi, in Pycnoporus genus. KEY POINTS: • PsAA9A is the first AA9 from P. sanguineus to be characterized. • PsAA9A has activity on cellulose, producing C1-oxidized cello-oligosaccharides. • Boosting activity with GH1, GH5, and GH6 was proven.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Proteínas Fúngicas/genética , Humanos , Oxigenases de Função Mista/genética , Polyporaceae , Polissacarídeos , Saccharomycetales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...